ELIZA cgi-bash version rev. 1.90
- Medical English LInking keywords finder for the PubMed Zipped Archive (ELIZA) -

return kwic search for study, out of >500 occurrences
300943 occurrences (No.75 in the rank) during 5 years in the PubMed. [no cache] 500 found
229) In the present study, the anti-osteoclastic effects of two synthetic nitensidine A derivatives (nitensidine AT and AU) were also examined to gain insight into the structural features of nitensidine A that exert an anti-osteoclastic effect.
--- ABSTRACT ---
PMID:23892478 DOI:10.1007/s10616-013-9590-2
2015 Cytotechnology
* Nitensidine A, a guanidine alkaloid from Pterogyne nitens, induces osteoclastic cell death.
- Nitensidine A is a guanidine alkaloid isolated from Pterogyne nitens, a common plant in South America. To gain insight into the biological activity of P. nitens-produced compounds, we examined herein their biological effects on osteoclasts, multinucleated giant cells that regulate bone metabolism by resorbing bone. Among four guanidine alkaloids (i.e., galegine, nitensidine A, pterogynidine, and pterogynine), nitensidine A and pterogynine exhibited anti-osteoclastic effects at 10 μM by reducing the number of osteoclasts on the culture plate whereas galegine and pterogynidine did not. The anti-osteoclastic activities of nitensidine A and pterogynine were exerted in a concentration-dependent manner, whereas nitensidine A exhibited an approximate threefold stronger effect than pterogynine (IC50 values: nitensidine A, 0.93 ± 0.024 μM; pterogynine, 2.7 ± 0.40 μM). In the present study, the anti-osteoclastic effects of two synthetic nitensidine A derivatives (nitensidine AT and AU) were also examined to gain insight into the structural features of nitensidine A that exert an anti-osteoclastic effect. The anti-osteoclastic effect of nitensidine A was greatly reduced by substituting the imino nitrogen atom in nitensidine A with sulfur or oxygen. According to the differences in chemical structures and anti-osteoclastic effects of the four guanidine alkaloids and the two synthetic nitensidine A derivatives, it is suggested that the number, binding site, and polymerization degree of isoprenyl moiety in the guanidine alkaloids and the imino nitrogen atom cooperatively contribute to their anti-osteoclastic effects.
--- ABSTRACT END ---
[
right
kwic]
[frequency of next (right) word to study,]
(1)219 we (6)6 two (11)3 to (16)2 human
(2)85 the (7)4 which (12)2 24 (17)2 in
(3)22 a (8)3 DNA (13)2 an (18)2 serum
(4)11 and (9)3 therefore, (14)2 effects (19)2 six
(5)8 it (10)3 three (15)2 further

add keyword

--- WordNet output for study, --- --- WordNet end ---