kwic

study,

study,

right

off

ON

20

1

100

500

strict

- Medical

return
kwic search for **study,** out of >500 occurrences

300943 occurrences (No.**75** in the rank) during 5 years in the PubMed. [cache]

--- **ABSTRACT** ---

--- **ABSTRACT END** ---

** **

**[frequency of next (right) word to study,]**

300943 occurrences (No.

20) In this study, we approach multiple hypothesis testing based on both Bayes factors and p-values, regarding multiple hypothesis testing as a multiple model selection problem. |

PMID:22337766 DOI:10.1177/0962280212437827 |

2015 Statistical methods in medical research |

* Unscaled Bayes factors for multiple hypothesis testing in microarray experiments. |

- Multiple hypothesis testing collects a series of techniques usually based on p-values as a summary of the available evidence from many statistical tests. In hypothesis testing, under a Bayesian perspective, the evidence for a specified hypothesis against an alternative, conditionally on data, is given by the Bayes factor. In this study, we approach multiple hypothesis testing based on both Bayes factors and p-values, regarding multiple hypothesis testing as a multiple model selection problem. To obtain the Bayes factors we assume default priors that are typically improper. In this case, the Bayes factor is usually undetermined due to the ratio of prior pseudo-constants. We show that ignoring prior pseudo-constants leads to unscaled Bayes factor which do not invalidate the inferential procedure in multiple hypothesis testing, because they are used within a comparative scheme. In fact, using partial information from the p-values, we are able to approximate the sampling null distribution of the unscaled Bayes factor and use it within Efron's multiple testing procedure. The simulation study suggests that under normal sampling model and even with small sample sizes, our approach provides false positive and false negative proportions that are less than other common multiple hypothesis testing approaches based only on p-values. The proposed procedure is illustrated in two simulation studies, and the advantages of its use are showed in the analysis of two microarray experiments. |

[

right

kwic]

(1)219 we | (6)6 two | (11)3 to | (16)2 human |

(2)85 the | (7)4 which | (12)2 24 | (17)2 in |

(3)22 a | (8)3 DNA | (13)2 an | (18)2 serum |

(4)11 and | (9)3 therefore, | (14)2 effects | (19)2 six |

(5)8 it | (10)3 three | (15)2 further |

add keyword

--- **WordNet** output for **study,** ---
--- **WordNet** end ---